En naviguant sur notre site vous acceptez l'installation et l'utilisation des cookies sur votre ordinateur. En savoir +

Menu Logo Principal Logo partenaire

LEPSE

Publications

Retrouvez nos publications sur Google Scholar :

Articles méthodologiques

  • Berthézène et al. 2014. Carte de multiplexage 160 voies RS232 : Connection de 160 balances dans un dispositif de phénotypage. Le Cahier des Techniques de l’INRA 2014 (83) n°3-2014
  • Brichet, N. et al. 2017. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. Plant Methods 13, 96.
  • Dauzat, et al. 2016. PHENOPSIS Quelles évolutions technologiques du premier automate de phénotypage des plantes? Cahier des Techniques INRA.
  • Pradal C, Artzet S, Chopard J, et al. 2017. InfraPhenoGrid: A scientific workflow infrastructure for Plant Phenomics on the Grid. Future Generation Computer Systems 67, 341–353.
  • Berthezene S, Brichet N, Negre V, Parent B, Suard B, Tireau A, Turc O, Tardieu F, Welcker C. 2015. PHENODYN: A high throughput platform for measurement of organ elongation rate and plant transpiration with high temporal resolution. EPPN Plant Phenotyping Symposium.
  • Bosquet LC, Brichet N, Fournier C, et al. 2015. PHENOARCH, a multiscale phenotyping platform for plant architecture, growth rate, water use efficiency and radiation use efficiency. EPPN Plant Phenotyping Symposium.
  • Bresson J, Vasseur F, Dauzat M, Koch G, Granier C, Vile D. 2015. Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. Plant methods 11, 23.
  • Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. 2016. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytologist 212, 269–281.
  • Dambreville A, Griolet M, Rolland G, Dauzat M, Bédiée A, Balsera C, Muller B, Vile D, Granier C. 2017. Phenotyping oilseed rape growth-related traits and their responses to water deficit: the disturbing pot size effect. Functional Plant Biology 44, 35–45.
  • Granier C, Vile D. 2014. Phenotyping and beyond: modelling the relationships between traits. Current Opinion in Plant Biology 18, 96–102.
  • Lièvre M, Granier C, Guédon Y. 2016. Identifying developmental phases in the Arabidopsis thaliana rosette using integrative segmentation models. New Phytologist.

Articles scientifiques (projets externes)

  • Bac-Molenaar et al.. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis. Plant Cell Environ. 39, 88–102 (2016).
  • Bac-Molenaar, et al. Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. J. Exp. Bot. 66, 5567–5580 (2015).
  • Dapp M, et al. 2015. Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids.Nature plants 1, 15092.
  • Dignat, G., et al. The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants. Plant Cell Environ. 36, 1105–1119 (2013).
  • Lopez G, et al. 2015a. Genetic variation of morphological traits and transpiration in an apple core collection under well-watered conditions: towards the identification of morphotypes with high water use efficiency. PloS one 10, e0145540.
  • Lopez, G. et al. High-throughput phenotyping of an apple core collection: identification of genotypes with high water use efficiency. Horticultural Crops 1150 335–340 (2015).
  • Ryan AC et al (2016) Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. Plant Science 251: 101-109
  • Rymaszewski, W. et al. Stress-Response Gene Expression Reflects Morpho-Physiological Responses to Water Deficit. Plant Physiol. pp–00318 (2017).
  • Sciara, G. et al. High-throughput phenotyping of a maize introgression library under water deficit conditions. EPPN Plant Phenotyping Symposium (2015)
  • Tenaillon MI et al., (2016) Testing the link between genome size and growth rate in maize. PeerJ 4: e2408.

Articles scientifiques (projets internes)

  • Caldeira CF, Bosio M, Parent B, Jeanguenin L, Chaumont F, Tardieu F. 2014a. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. Plant physiology 164, 1718–1730.
  • Caldeira CF, Jeanguenin L, Chaumont F, Tardieu F. 2014b. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nature communications 5.
  • Coupel-Ledru A, Lebon É, Christophe A, Doligez A, Cabrera-Bosquet L, Péchier P, Hamard P, This P, Simonneau T. 2014. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache x Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Journal of experimental botany, eru228.
  • Millet EJ, Welcker C, Kruijer W, et al. 2016. Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiology 172, 749–764.
  • Oury V, Tardieu F, Turc O. 2015. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant physiology, pp–00268.
  • Pantin F, Renaud J, Barbier F, et al. 2013. Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. Current Biology 23, 1805–1811.
  • Turc O, Bouteillé M, Fuad-Hassan A, Welcker C, Tardieu F. 2016. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytologist 212, 377–388.
  • Vasseur F, Bontpart T, Dauzat M, Granier C, Vile D. 2014. Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies. Journal of Experimental Botany 65, 6457–6469.
  • Coupel-Ledru, A. et al. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc. Natl. Acad. Sci. 113, 8963–8968 (2016).
  • Prado, S. A. et al. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant Cell Environ. (2017).